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We discuss the interface design for the Sparse Basic Linear Algebra Subprograms (BLAS), the ker-
nels in the recent standard from the BLAS Technical Forum that are concerned with unstructured
sparse matrices. The motivation for such a standard is to encourage portable programming while
allowing for library-specific optimizations. In particular, we show how this interface can shield one
from concern over the specific storage scheme for the sparse matrix. This design makes it easy to
add further functionality to the sparse BLAS in the future.
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1. INTRODUCTION

In this article, we consider the interface design of the Basic Linear Algebra
Subprograms for sparse matrices: the Sparse BLAS. This work is part of the
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effort of the BLAS Technical Forum and appears as Chapter 3 in the standard
specification [Blackford et al. 2001].

A matrix is termed sparse if many of its entries are zero. However, for this
to be a meaningful distinction, it is also necessary that some advantage can
be taken of this fact, either for storage or operations with the matrix, or both.
Clearly, band matrices are sparse, but this proposal is concerned with sparse
matrices that may have much more irregular sparsity patterns. Although the
dense BLAS [Dongarra et al. 1988, 1990] have support for some sparse matri-
ces, specifically, banded and packed matrices, and LAPACK [Anderson et al.
1995] supports tridiagonal matrices, neither library provides functionality for
unstructured sparse matrices. An early proposal to extend the BLAS for sparse
computation was presented in Dodson et al. [1991], although its focus was vec-
tor (Level 1) operations. The omission of sparse matrix support is not because
sparse matrices are uncommon, or because sparse matrix operations cannot be
optimized. In fact, the opposite is true. Sparse matrices are ubiquitous in many
applications in science, engineering and commerce. For example, the discretiza-
tion of partial differential equations by finite elements or finite differences gives
rise to a sparse matrix, as do representations of structures and networks. Also,
numerous studies have shown that careful attention to the implementation of
sparse matrix operations, for example sparse matrix-vector multiplication, can
have a very significant impact, often improving performance by an order of
magnitude.

Unlike regularly structured sparse and dense matrices, whose data access
patterns are known a priori, data access patterns for unstructured sparse matri-
ces are known only after the matrix has been constructed. Thus, static schedul-
ing techniques that are the foundation for high-performance dense BLAS oper-
ations are ineffective for unstructured sparse computations. At the same time,
sparse matrix operations, for example, in the context of an iterative solution
method [Barrett et al. 1993; Saad 1992] are often called repeatedly with the
same data access pattern. Therefore, it is sensible to spend some time computing
the most efficient data access patterns for a given sparse matrix and a common
operation such as matrix-vector multiplication. Performance improvements for
sparse matrix operations typically come from reordering data access to increase
the degree of fine grain parallelism [Blelloch et al. 1993], or improving cache
performance [Gropp et al. 2000; Hu 2000]. The Sparse BLAS standard allows
complete freedom for selecting the data access pattern because the standard
does not prescribe a data structure for storing matrix entries and uses a matrix
construction process that enables analysis of data access patterns.

Unfortunately, almost every application area has a different way of storing
and accessing the nonzero entries of the sparse matrix so that it is difficult to
design software to apply to all areas. In this article, we will discuss in detail
how the Sparse BLAS interface addresses these problems via a generic handle-
based representation, that is, one in which the matrix details (such as its specific
storage scheme) are not specified in the argument list. In such cases, an (integer)
handle is passed instead to the Level 2 and Level 3 routines, which refer to a
precreated Sparse BLAS matrix. This avoids any explicit reference to matrix
storage schemes and greatly simplifies the interface.
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As with the other BLAS, the Sparse BLAS are designed with more than one
objective in mind. In this case, the main constituency are people writing and
using iterative methods for large sparse system solution or the eigenproblem.

The Sparse BLAS have been discussed for many years, even before the BLAS
Technical Forum started (see, e.g., the introduction in Duff et al. [1997]) so that
they do represent a good consensus of what is required by the community. The
current specification represents a small, accepted list of operations that may
grow over time. Indeed, we hope that a feature of the Sparse BLAS is that they
lend themselves easily to future extensions.

Computational kernels in the Sparse BLAS standard are grouped in three
major categories, similar to the other BLAS interfaces. Level 1 describes vec-
tor and scalar operations, Level 2 describes operations involving a sparse matrix
and dense vector, and Level 3 describes operations involving a sparse matrix
and a dense (typically tall and thin) matrix.

We discuss our handle-based generic interface in Section 2 and describe the
functionality that we support in Section 3. We consider the representation of
sparse vectors in Section 4, the management of handles and sparse matrices
in Section 5, and comment on our error handling and use of the matrix prop-
erty enquiry routines in Section 6. We consider the interface to Fortran 77, C,
and Fortran 95 programming languages in Section 8, giving short examples
illustrating the use of each interface, and make some concluding remarks in
Section 9. Finally, we illustrate the use of the Sparse BLAS in a more realistic
application in the Appendix.

2. HANDLE-BASED GENERIC INTERFACE

One important difference between this and the other BLAS interfaces in the
standard is the support for generic or abstract matrix representations. That is,
Level 2 and Level 3 operations take as input not the matrix entries themselves,
but rather a pointer, or a handle to a generic representation to a previously
created sparse matrix object. This allows algorithms to be coded using Sparse
BLAS primitives without disclosing the underlying matrix storage format. The
result is more general code that can be run under different situations and stor-
age optimization strategies without modification. This means that the entry
data needs to be converted and held internally within an efficient storage rep-
resentation. The internal representation, however, is determined by the BLAS
implementation and is not specified by the standard. Library developers are
then able to create highly optimized versions of these kernels for differing com-
puter architectures or specific application areas.

This strong reliance on referencing matrices solely by their matrix handle
represents a significant departure from earlier efforts on the sparse BLAS (e.g.,
Carney et al. [1994], Duff et al. [1997], and Remington and Pozo [2001]) and
is quite different from our earlier drafts for a BLAS standard for sparse ma-
trices where some of the more common data structures were explicitly pre-
sented. Of course, our current approach is not without its dangers. Far more
power is placed in the hands of the library developer. For example, if an imple-
mentation utilizes an internal global table to manage matrix handles, special
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Table I. Level 1 Sparse BLAS: Sparse Vector Operations

USDOT sparse dot product r ← xT y ,
r ← xH y

USAXPY sparse vector update y ← αx + y
USGA sparse gather x ← y |x
USGZ sparse gather and zero x ← y |x ; y |x ← 0
USSC sparse scatter y |x ← x

Table II. Level 2 Sparse BLAS: Sparse Matrix-Vector Operations

USMV sparse matrix-vector multiply y ← αAx + y
y ← αAT x + y
y ← αAH x + y

USSV sparse triangular solve x ← αA−1x
x ← αA−T x
x ← αA−H x

Table III. Level 3 Sparse BLAS: Sparse Matrix-Matrix Operations

USMM sparse matrix-matrix multiply C← αAB + C
C← αAT B + C
C← αAH B + C

USSM sparse triangular solve B← αT−1 B
B← αT−T B
B← αT−H B

consideration must be taken during the matrix-construction phase if a thread-
safe implementation is required, that is, the modification of this global state
table must occur within a critical section. (Note that this is an issue for the
implementor, not the user of a Sparse BLAS package.)

Managing these handles typically requires a three-step process. First, a new
BLAS sparse matrix is created and initialized with values; it can then be used
in subsequent Level 2 and Level 3 computational kernels; finally, when that
matrix is no longer needed, it can be freed to reclaim computer memory and
associated resources (see Section 5).

The Sparse BLAS standard does not impose a limit on the number of sparse
matrix handles that can exist at the same time. That number is constrained by
the available memory and other computer resources that will vary on different
platforms. However, it is the intent of the standard that when a sparse matrix
handle is released, all resources associated with the matrix are also freed.

3. FUNCTIONALITY

As in the case of the dense BLAS, we have developed the Sparse BLAS to
support Level 1, 2, and 3 operations. We present in Tables I, II, and III, the
functionality supported by the Sparse BLAS at these three levels, respectively.
Before we discuss the functionality further, we first define some of the symbols
used in the tables. We prefix all the Sparse BLAS routines with the letters US
for Unstructured Sparse. For the Level 1 Sparse BLAS, y represents a dense
vector while x represents a vector in packed form (as detailed in Section 4). The
symbol y |x selects from the dense vector y those components that are referenced
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by the integer array associated with x. The symbols r and α are scalars. For the
Level 2 BLAS, both the vectors x and y represent dense vectors. A and T are
always sparse matrices, with T being triangular; B and C are dense matrices.
The notation Z T , Z H and Z−1 refer to the transpose, Hermitian transpose and
inverse of a matrix Z , respectively.

The functionality reflects the belief in the main purposes for which the Sparse
BLAS will be used combined with a desire to keep the set of kernels as small
as possible, to encourage both their use and their support by the vendors. The
Sparse BLAS has been designed in a flexible way so that more functionality
can be easily added later.

The first thing to note in the tables is that not only is much less functionality
supported than in the dense case but some of the kernels are simpler than in
the dense case. For example, the β scaling of y is not used in the Level 1 vector
updates ( y ← αx + β y). The Sparse BLAS function call for this operation
is USAXPY, which assumes β is 1.0. The reason for this is that the scaling
operation of y is of order the length of the full vector and not of order the number
of nonzero entries. Thus, the scaling will dominate the sparse computation.
Furthermore, it changes the computational complexity of the routine based on a
runtime input parameter, which is inconsistent with other BLAS computational
routines.

We note that all Level 2 and Level 3 operations involve the product (or inverse
product) of a sparse matrix with a dense vector or matrix. We do not support
operations on two sparse structures. One reason for this is that of complexity;
another is that of potentially mixing different representations for the two sparse
structures. These are generally deemed too complicated for low-level kernels.
For example, merely determining the fill-in for a sparse matrix—sparse matrix
multiplication requires complicated graph analysis and is beyond the scope of
a low-level computational kernel. In addition, it is often computationally more
efficient to avoid such operations. For example, when forming the product ABx,
where A and B are sparse matrices and x a dense vector, it is usually far better
to compute this as A ∗ (B ∗ x) rather than (A ∗ B) ∗ x. Furthermore, we know
of vendors who have already optimized Sparse BLAS in our current function-
ality, but we know of no cases where this optimization has been extended to
the case of two sparse structures. This does not mean that such a facility is
never requested. For example, algebraic multi-level methods (see, e.g., Tong
and Tuminaro [2000]) often form a coarse operator via explicit construction of
Ac = R A f P , where A f , P and R are given fine grid, prolongation and restric-
tion operators, respectively. The paper of Bank and Douglas [1993] describes
a kernel for use in a similar situation. Thus, there are situations where such
kernels could be useful, and indeed a sparse-sparse framework may become an
extension of this standard in the future.

As mentioned earlier, the principal constituency for this interface is those
developing and using iterative methods to solve sparse linear equations and
we believe that our kernels address most of the needs of this community.
We have not attempted to address the often more complicated kernels in
sparse direct methods because these methods use a far wider range of data
structures (not just for storage but at the innermost loop). For many years,
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some proponents of direct methods have argued that the most appropriate
kernels in this case should be based on the dense BLAS [Duff 1981] and many
sparse direct approaches have been designed to exploit this including frontal
[Duff and Scott 1996] and multifrontal [Duff and Reid 1983] techniques.

4. SPARSE VECTOR REPRESENTATION

Sparse vectors are represented in Level 1 operations by two separate arrays:
one with the real or complex nonzero entries, and the other an integer array
holding their respective offsets.1 Thus, the vector {0.0, 4.3, 0.0, 2.1, 1.9, 0.0} can
be represented in packed form as two arrays {4.3, 2.1, 1.9} and {2, 4, 5}. We do
not specify the ordering of the entries so there are several equivalent storage
representations for the same sparse vector. The index base (that is whether
one starts counting at zero or one) is part of the semantics of the underlying
representation and should be explicitly stated. In our example, we listed the
elements in increasing index order and have used the Fortran convention of
starting with an index of 1 for the first component.

The standard does not allow repeated indices in sparse vectors, thus calling a
Level 1 routine with such a representation results in undefined behavior. (Note
that repeated indices in sparse matrices are allowed, since the structures are
constructed internally by the BLAS framework. See Section 5.1.1.)

5. SPARSE MATRIX MANAGEMENT

The Sparse BLAS standard promotes an object based approach to the construc-
tion and use of sparse matrices. The construction process uses opaque interfaces
in the sense that, as the user inputs matrix entries, the entries are copied to in-
ternal storage, but how the entries will be stored is not specified. In practice, the
matrix storage will depend on the nonzero structure of the matrix, the proper-
ties that the user sets (if any), and the type of computer system being used. (See
Barrett et al. [1993] and Duff et al. [1986] for an overview of commonly-used
sparse storage formats.) Once created, a Sparse BLAS matrix is referenced by
its handle, the equivalent of an object instance in object-oriented programming
terminology. We note that the actual handle value will be held as an integer, for
portability across language implementations. In the remainder of this section
we will discuss the three basic phases of constructing, using, and destroying a
Sparse BLAS matrix.

5.1 Matrix construction

Constructing a Sparse BLAS matrix requires three or four basic steps:

—create the matrix handle,
—set matrix properties (optional),
—insert matrix values, and then
—end insertion.

1Several other representations, such as an array of C structures or a Fortran 95 derived data type
holding nonzero and index values, were examined but the separate array scheme can be easily
represented in all language bindings and is one of the most commonly used formats.
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For example, the following ANSI C example illustrates how to create a sparse
3×3 symmetric matrix, with nonzeros on the main diagonal and the (0,2) (and,
by symmetry, the (2,0)) position:

A =

 3.14 0 9.63
0 1.12 0

9.63 0 2.74

 . (1)

blas_sparse_matrix A = BLAS_duscr_begin(3,3);
BLAS_ussp(A, blas_symmetric);
BLAS_duscr_insert_entry(A, 1, 1, 1.12);
BLAS_duscr_insert_entry(A, 0, 0, 3.14);
BLAS_duscr_insert_entry(A, 2, 2, 2.74);
BLAS_duscr_insert_entry(A, 0, 2, 9.63);
BLAS_duscr_end(A);

In practice, larger matrices need not be constructed one entry at a time. Instead,
insertion routines exist than can initialize a complete column, row, block, or an
arbitrary list of nonzero values at a time. In this section, we discuss the details
of this construction.

5.1.1 Creating a Matrix Handle. There are Sparse BLAS matrix handles
for three types of data, corresponding to the three types of matrix entries that we
support. Note that, as soon as the handle is initialized, all subsequent references
and operations on the matrix referenced by that handle must be to the same
matrix type as originally defined. The three types of matrix are:

(1) Point Entry Matrices. The entries of this type of matrix are simple scalar
values. The sparsity structure describes the layout of these entries in the
matrix.

(2) Block Entry Matrices with Constant Block Size. Entries in these matrices
are dense submatrices (blocks), each with the same row and column dimen-
sion. Block entry matrices have three different types of dimensions. The first
is the number of block rows and columns, the second is the number of rows
and columns in each block, and the third is the number of equations and
variables (standard row and column dimensions, respectively). Of course,
any one of the types of dimensions can be obtained from knowing the other
two types.

(3) Block Entry Matrices with Varying Block Sizes. Entries in these matrices
are also dense submatrices, but block sizes may vary from block row to block
row. In this case, both the number of blocks and their dimensions must be
specified.

Block entry matrices occur naturally for problems where multiple degrees of
freedom are associated with a single physical location. For example, in a fluid
dynamics calculation, we may track the x, y and z direction velocities at a single
mesh point. Variable block entry matrices occur when some degrees of freedom
are tracked in one subregion and not another, for example, chemical species
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11 0 13 14
21 22 0 0

0 32 33 34
0 0 43 44




11 0 13 14
21 22 0 0

0 32 33 34
0 0 43 44




11 0 13 14
21 22 0 0

0 32 33 34
0 0 43 44


Fig. 1. Three types of matrix entries: (i) point (ii) constant block (iii) variable block.

concentration. Our definition of block entries enforces a two-dimensional par-
titioning of the matrix as illustrated in Figure 1 for a 4 × 4 matrix. The first
matrix in this figure has no partitioning and corresponds to a point entry ma-
trix. In this case, each nonzero value is stored as a separate entry. The middle
version has the same values, but we impose a 2 × 2 block partitioning. The
rightmost version has a variable partition size that creates a 3×3 block matrix
whose block entry sizes vary.

When a matrix has an underlying block structure, it is often advantageous
to exploit this structure for the following reasons.

(1) Integer Storage and Arithmetic Costs Are Substantially Reduced. Integer
storage and computational complexity is reduced by a factor equal to the
square of the average block entry dimension. For example, if the average
block entry dimension is 3 × 3, the integer storage and computation is re-
duced by a factor of 9.

(2) Computations Involving Dense Matrices Often Perform Well on Modern
Processors. Block entries have a predictable memory access pattern that
can be exploited to increase instruction pipelining, latency hiding, and cache
memory hits. Furthermore, if the block entry dimensions are large enough,
dense BLAS kernels can be used. If the block entry dimensions are at least
10, a very large fraction of peak performance can be obtained for Sparse
BLAS computations.

(3) Block Entry Matrices Enable Hybrid Sparse-Dense Algorithms. Block
entry matrices provide an explicit hierarchy that can be exploited by
two-level algorithms. For example, block Gauss–Seidel or block Jacobi algo-
rithms [Chow and Heroux 1998] can be used such that the outer algorithm
is performed using the graph of the matrix and the inner algorithm exploits
the dense block entries.

5.1.2 Asserting Matrix Properties. Once a matrix handle is created, it is
possible to assert certain matrix properties that may have an impact on per-
formance or storage, or may be required for a matrix to be used with cer-
tain operations. Table IV lists the properties that can be set for a given ma-
trix handle. (These properties must be set before the first call to an insertion
routine.)

The pair of parameters blas_non_unit_diag, blas_unit_diag asserts
whether or not the matrix diagonal values are assumed to be one, in which
case the user will not insert them into the matrix. If a matrix is unit triangular
and will be used for triangular solves, asserting blas_unit_diag can signifi-
cantly reduce both storage and computation.
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Table IV. Matrix Properties

blas non unit diag nonzero diagonal entries are stored (default)
blas unit diag diagonal entries are not stored and assumed to be 1.0
blas no repeated indices indices are unique (default)
blas repeated indices nonzero values of repeated indices are summed
blas lower symmetric only lower half of symmetric matrix is specified by user
blas upper symmetric only upper half of symmetric matrix is specified by user
blas lower hermitian only lower half of Hermitian matrix is specified by user
blas upper hermitian only upper half of Hermitian matrix is specified by user
blas lower triangular sparse matrix is lower triangular
blas upper triangular sparse matrix is upper triangular
blas zero base indices of inserted items are 0-based (default for C)
blas one base indices of inserted items are 1-based (default for Fortran)

Applicable for block entries only
blas rowmajor dense block stored in row major order (default for C)
blas colmajor dense block stored in column major order (default for Fortran)
blas irregular general unstructured matrix
blas regular structured matrix
blas block irregular unstructured matrix best represented by blocks
blas block regular structured matrix best represented by blocks
blas unassembled matrix is best represented by cliques

The pair blas_no_repeated_indices, blas_repeated_indices asserts whe-
ther or not some matrix entries may be listed more than once. If indices
are repeated, all values will be summed into a single entry. Asserting blas_
no_repeated_indices can permit more efficient matrix construction. Assert-
ing blas_repeated_indices allows for correct assembly of matrix entries for
finite-element computations and related methods.

Theparametersblas_lower_symmetric,blas_upper_symmetric, blas_lower_
hermitian, and blas_lower_symmetric allow users to store only the upper or
lower triangle of a symmetric or Hermitian matrix and still have the matrix
considered as square rather than triangular.

Parameters blas_zero_base, and blas_one_base allow the user to declare
that indices start at zero (C-style indexing) or one (Fortran-style indexing).
blas_rowmajor and blas_colmajor indicate whether dense blocks, as might be
used in the block storage schemes, are held in row major or column major order,
respectively.

Finally, the parameters blas_irregular, blas_regular, blas_block_
irregular, blas_block_regular, and blas_unassembled allow the user to de-
scribe possible regularity in the structure. This could be used if the matrix were
known to come from a regular grid or other structured data. These five param-
eters are intended to provide optimization hints and are completely optional;
their omission should not affect program correctness.

5.1.3 Inserting Matrix Values. Once matrix properties (if any) have been
set, we can insert values into the matrix in a variety of ways. For a point
entry matrix, insertion of matrix values is always in terms of a single entry
or a collection of entries. Entries can be inserted using the following five
methods.
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(1) Single Entry. A single matrix entry together with its row and column
index.

(2) List of Entries. In this case a list of values with corresponding row and
column indices is submitted for insertion.

(3) List of Row Entries. A list of values with corresponding column indices is
submitted for insertion in a specified row.

(4) List of Column Entries. A list of values with corresponding row indices is
submitted for insertion in a specified column.

(5) Clique. A two-dimensional array of values with two integer arrays that
describe the row and column indices associated with the rows and columns
of the two-dimensional array [Duff et al. 1986]. Such a data structure is
appropriate for finite-element computations. The example below illustrates
this method.

The five different methods of inserting matrix entries may be used in any
combination. If insertion is done more than once for any matrix entry and
blas_repeated_indices is enabled, repeated values will be summed into a sin-
gle value for such an entry.

Consider the following matrix:

A =


1.1 0 1.3 0

0 2.2 0 2.4
3.1 0 3.3 0

0 4.2 0 4.4

 . (2)

We can pass in all entries (following a call to the handle initialization rou-
tines) by defining a list of eight entries with the values, row indices and column
indices as follows:

values = (1.1 1.3 2.2 2.4 3.1 3.3 4.2 4.4)
row indices = (1 1 2 2 3 3 4 4)

column indices = (1 3 2 4 1 3 2 4).

Note that calls to the C interface would default to using 0-based indices. The
ordering of the entries is arbitrary. Also, any partial list of the above entries
could be passed, as long as all entries were eventually submitted. We can build A
row-by-row (or column-by-column) in the obvious way by submitting the entries
corresponding to each row (or column) one row (column) at a time.

As an alternative to the above insertion methods, the entries of A can be
inserted by cliques in the following way. First submit a two-dimensional ar-
ray (whose major ordering depends on the matrix properties as defined in
Table IV) as:

values =
(

1.1 1.3
3.1 3.3

)
(3)

and two associated index arrays:

row indices = (1 3)
column indices = (1 3).
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To complete the insertion, we submit the array

values =
(

2.2 2.4
4.2 4.4

)
(4)

and its associated row and column scattering vectors

row indices = (2 4)
column indices = (2 4).

Insertion for a block entry matrix must be performed using the block en-
try insertion routine. This routine accepts a single block as a two-dimensional
array of values and a corresponding block row and block column index. The
two-dimensional array will be summed into the existing matrix. The exact defi-
nition of the two-dimensional array depends on the language binding. Defining
data structures for lists of block entries was deemed to be too complicated and
language dependent, and also unnecessary since the block entry already passes
in several matrix values and therefore amortizes the overhead of the call.

5.1.4 Ending Insertion. Once all matrix entries have been input, we sig-
nal the end of insertion by calling a routine that will process all entries with
the intent of reorganizing the storage of the matrix and performing any pre-
processing that will optimize the performance of operations using this matrix.
The exact process performed by calling the end insertion routine is very much
implementation dependent.

5.2 Using Sparse BLAS Matrices

Once a Sparse BLAS matrix handle has been completely constructed (some-
thing that can be tested by checking the property blas_valid_handle), it is
possible to use the matrix handle to perform operations. At this time, the four
operations shown in Tables II and III are supported.

In addition to performing operations with a Sparse BLAS matrix, it is possi-
ble to query its properties by calling the USGP routine. Table V lists the properties
that can be queried.

5.3 Destroying a Sparse BLAS Matrix

When a Sparse BLAS matrix is no longer needed, it may be destroyed (and
all associated storage returned to the operating system) by passing the matrix
handle to the Sparse BLAS destructor routine.

5.4 Power Method Example

We present an example showing how the Sparse and dense BLAS can be used
to implement the power method for finding the dominant eigenvalue and corre-
sponding eigenvector of a matrix [Golub and Van Loan 1996]. Additional exam-
ples showing how to construct and use a Sparse BLAS matrix with each of the
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Table V. Matrix Properties that Can be Queried

blas num rows returns the number of rows of the matrix
blas num cols returns the number of columns of the matrix
blas num nonzeros returns the number of stored entries
blas complex matrix values are complex
blas real matrix values are real
blas single precision matrix values are single precision
blas double precision matrix values are double precision
blas general neither symmetric nor Hermitian (default)
blas symmetric sparse matrix is symmetric
blas hermitian (complex) sparse matrix is Hermitian
blas lower triangular sparse matrix is lower triangular
blas upper triangular sparse matrix is upper triangular
blas invalid handle handle not currently in use
blas new handle before any items have been inserted
blas open handle after the first item has been inserted
blas valid handle after the USCR END routine has been called

language interfaces (Fortran 77, C, and Fortran 95) can be found in Section 8.
The matrix used for all examples is the following 4× 4 sparse matrix

A =


1.1 0 0 0

0 2.2 0 2.4
0 0 3.3 0

4.1 0 0 4.4

 . (5)

Code for the power method example for each of the supported programming
languages is given in the appendix.

6. ERROR HANDLING AND MATRIX PROPERTIES

The Sparse BLAS have an error return scheme consistent with the error-
handling framework described in Section 1.8 of the BLAS Standard [Blackford
et al. 2001]. In particular, most housekeeping routines related to managing
sparse matrix handles utilize return codes to signify the success or failure of
the operation. Furthermore, the Level 2 and Level 3 computational kernels em-
ploy a similar mechanism. Typically, these kernels return a value of 0 (zero) if
the operation completed successfully, for example

if (BLAS_duscr_insert_entry(A, 2.1, 2, 3) != 0)
/* matrix entry was not successfully included */ ;

The handle-management routines use return codes rather than aborting
the program, since these requests (such as constructing matrices, insert-
ing elements, setting matrix properties) usually make use of queries about
available resources, such as computer memory, and their failure needs to be
recoverable.

Query routines interrogate the status or properties of a handle. These prop-
erties are listed in Table V. A few query routines return integer values, denoting
the various matrix-size properties, for example
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In ANSI C,

M = BLAS_usgp(A, blas_num_rows);
N = BLAS_usgp(A, blas_num_cols);
nz = BLAS_usgp(A, blas_num_nonzeros);

or, in Fortran 77,

CALL BLAS_USGP(A, BLAS_NUM_ROWS, M)
CALL BLAS_USGP(A, BLAS_NUM_COLS, N)
CALL BLAS_USGP(A, BLAS_NUM_NONZEROS, NZ)

or, in Fortran 95,

call usgp(a, blas_num_rows, m)
call usgp(a, blas_num_cols, n)
call usgp(a, blas_num_nonzeros, nz)

The majority of matrix properties, however, are Boolean values, such as whether
a matrix contains complex values, or whether it is symmetric or triangular. In
such cases, the values returned are either 1 (true) or 0 (false). These can be
used to form guarded statements, which can often reduce potential errors of
calling Sparse BLAS kernels with inappropriate arguments. For example, to
avoid calling a triangular solve operation on a nontriangular matrix in ANSI
C, one can write,

if (BLAS_usgp(A, blas_lower_triangular))
BLAS_ussv(blas_no_transp, alpha, A, x, incx);

or, in Fortran 95,

call usgp(A,blas_lower_triangular,m)
if (m.eq.1) call ussv(A, x, istat, transt, alpha)

7. LIST OF FUNCTIONS AND SUBROUTINES

The Sparse BLAS standard contains nine computational routines for sparse
vectors and matrices, and thirteen routines for the creation and management
of BLAS sparse matrices. A complete function listing is provided in the stan-
dard document [Blackford et al. 2001]. Here, we provide a list of all 22 routine
names:

—Level 1 computational routines
—USDOT sparse dot product
—USAXPY sparse vector update
—USGA sparse gather
—USGZ sparse gather and zero
—USSC sparse scatter

—Level 2 computational routines
—USMV matrix/vector multiply
—USSV matrix/vector triangular solve
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—Level 3 computational routines
—USMM matrix/matrix multiply
—USSM matrix/matrix triangular solve

—Handle Management routines (Level 2/3)
—Creation routines

—USCR_BEGIN begin construction
—USCR_BLOCK_BEGIN begin block-entry construction
—USCR_VARIABLE_BLOCK_BEGIN begin variable block-entry construction

—Insertion routines
—USCR_INSERT_ENTRY add point-entry to construction
—USCR_INSERT_ENTRIES add list of point-entries to construction
—USCR_INSERT_COL add a compressed column

to construction
—USCR_INSERT_ROW add a compressed row to

construction
—USCR_INSERT_CLIQUE add a dense matrix clique to construction
—USCR_INSERT_BLOCK add a block entry at block

coordinate (bi, bj)
—Completion of construction routine

—USCR_END entries completed; build internal representation
—Matrix property routines

—USGP get/test for matrix property
—USSP set matrix property

—Destruction routine
—USDS release matrix handle

8. INTERFACE ISSUES

The Sparse BLAS supports Fortran 95, Fortran 77, and C and interfaces for the
purpose of avoiding the necessity of interlanguage calls. In addition to specific
function interfaces for each language, header files (modules for Fortran 95) of
predefined named constants and (where appropriate) function prototypes are
also provided. The purpose of the predefined named constants is to make code
more readable and portable. All constants are compatible with constants used
by the dense BLAS. In the remainder of this section, we discuss some details
specific to each language interface, and then give a simple example.

The functionality of the Sparse BLAS is nearly identical for each language
binding, except for one specific case: the Level 1 (vector) operations in C allow
the use for both 0-based and 1-based offsets. This feature is not available in the
Fortran bindings.2

2This decision was made by the BLAS Technical Forum for consistency with preexisting Fortran
Level 1 Sparse BLAS.
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8.1 Interface Issues for Fortran 95

Predefined constants for the Sparse BLAS are included in the module
blas sparse namedconstants that is included in the module blas sparse.
These include the sparse matrix properties constants defined in Tables IV
and V. In addition, the module blas sparse provides explicit interfaces to all
routines.

The interface example below illustrates multiplying the 4 × 4 matrix from
Section 5.4 with the vector x = {1.0, 1.0, 1.0, 1.0} performing the operation
y ← Ax. In this example, the sparse matrix is input by point (rather than
block) entries.

A separate implementation report [Duff and Vömel 2002] describes the de-
tails of a reference implementation of the Sparse BLAS in Fortran 95.

! Fortran 95 example: sparse matrix-vector multiplication

PROGRAM F95_EX

USE blas_sparse

IMPLICIT NONE
INTEGER, PARAMETER :: nmax = 4, nnz = 6
INTEGER i, n, a, istat
INTEGER, DIMENSION(:), ALLOCATABLE::indx,jndx
DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE:: val, x, y

ALLOCATE(val(nnz),x(nmax),y(nmax),indx(nnz),jndx(nnz))

indx=(/1,2,2,3,4,4/)
jndx=(/1,2,4,3,1,4/)
val=(/1.1,2.2,2.4,3.3,4.1,4.4/)
x=1.0D0
y=0.0D0

n = nmax
!
! ----------------------------------
! Step 1: Create Sparse BLAS Handle
! ----------------------------------
!
! Note that the matrix handle is just the integer variable a
!

CALL duscr_begin(n,n,a,istat)
!
! ----------------------------------
! Step 2: Insert entries one-by-one
! ----------------------------------
!
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DO i=1, nnz
CALL uscr_insert_entry(a, val(i), indx(i), jndx(i), istat)

END DO
!
! -----------------------------------------------
! Step 3: Complete construction of sparse matrix
! -----------------------------------------------
!

CALL uscr_end(a,istat)
!
! ---------------------------------------------
! Step 4: Compute Matrix vector product y = A*x
! ---------------------------------------------
!

CALL usmv(a,x,y,istat)
!
! ------------------------------
! Step 5: Release Matrix Handle
! ------------------------------
!

CALL usds(a,istat)
!
! ------------------------
! Step 6: Output solution
! ------------------------
!

WRITE(6,’(5D16.8)’) y

END

8.2 Interface Issues for Fortran 77

Although Fortran 77 is no longer a current standard, Fortran 77 compilers are
still heavily used and there are many Fortran applications that, even if compiled
with a Fortran 95 compiler, use a subset of the language that is very close to
Fortran 77. In addition, we have seen in the C interface to the legacy BLAS
(Appendix B of [Blackford et al. 2001]) that a Fortran 77 library can provide the
vast majority of functionality required by a higher-level interface and greatly
reduce the overall amount of work required to develop and support multiple
language bindings. For these reasons, we provide a Fortran 77 interface to the
Sparse BLAS.

Naming conventions for this interface prefix BLAS x to the root name,
where x can be one of (S, D, C, Z) representing real single-precision, real
double-precision, complex single-precision, and complex double-precision, re-
spectively. For example, the complex single-precision version of a sparse
dot product is BLAS CUSDOT. Some routines for supporting generic handles
are not floating-point type specific and do not require an x specifier in
the prefix. The routine for retrieving handle properties, BLAS USGP, is one

ACM Transactions on Mathematical Software, Vol. 28, No. 2, June 2002.



Sparse BLAS Overview • 255

such example. (These are clearly listed in the standard documentation
[Blackford et al. 2001].)

Predefined constants for the Sparse BLAS are included in the header file
blas sparse namedconstants.h. These include the sparse matrix properties
constants defined in Tables IV and V.

The following program illustrates the use of Fortran 77 code on the 4 × 4
matrix from Section 5.4. We note that some nonstandard features are present
in this example: the use of IMPLICIT NONE, the INCLUDE statement, and long
identifiers for variables and subroutine names. However, these extensions are
permitted by all the Fortran 77 compilers of which we have experience.

C Fortran 77 example: sparse matrix-vector multiplication

PROGRAM F77_EX
IMPLICIT NONE
INCLUDE "blas_namedconstants.h"
INTEGER NMAX, NNZ
PARAMETER (NMAX = 4, NNZ = 6)
INTEGER I, N, ISTAT, A
INTEGER INDX(NNZ), JNDX(NNZ)
DOUBLE PRECISION VAL(NNZ), X(NMAX), Y(NMAX)

C
C -----------------------------------------------
C Define Matrix, LHS and RHS in Coordinate format
C -----------------------------------------------
C

DATA VAL / 1.1, 2.2, 2.4, 3.3, 4.1, 4.4/
DATA INDX / 1, 2, 2, 3, 4, 4/
DATA JNDX / 1, 2, 4, 3, 1, 4/

C
DATA X / 1., 1., 1., 1./
DATA Y / 0., 0., 0., 0./

C
N = NMAX

C
C ----------------------------------
C Step 1: Create Sparse BLAS Handle
C ----------------------------------
C

CALL BLAS_DUSCR_BEGIN( N, N, A, ISTAT)
C
C ----------------------------------
C Step 2: Insert entries one-by-one
C ----------------------------------
C

DO 10 I=1, NNZ
CALL BLAS_DUSCR_INSERT_ENTRY(A, VAL(I), INDX(I), JNDX(I),
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ISTAT)
10 CONTINUE
C
C -----------------------------------------------
C Step 3: Complete construction of sparse matrix
C -----------------------------------------------
C

CALL BLAS_USCR_END(A, ISTAT)
C
C ---------------------------------------------
C Step 4: Compute Matrix vector product y = A*x
C ---------------------------------------------
C

CALL BLAS_DUSMV(BLAS_NO_TRANS, 1.0, A, X, 1, Y, 1, ISTAT)
C
C ------------------------------
C Step 5: Release Matrix Handle
C ------------------------------
C

CALL BLAS_USDS(A,ISTAT)
C
C ------------------------
C Step 6: Output solution
C ------------------------
C

WRITE(6,*)(Y(I),I=1,4)

END

8.3 Interface Issues for ANSI C

Predefined constants for the Sparse BLAS are included in the header file
blas enum.h, which is included as part of blas sparse.h. These include the
sparse matrix properties constants defined in Tables IV and V.

In a manner similar to the Fortran 77 interface, the naming conventions in C
prefix BLAS x to the root name, where x can be one of (s, d, c, z) representing real
single-precision, real double-precision, complex single-precision, and complex
double-precision, respectively. Some routines for supporting generic handles
are not floating-point type specific and do not require an x specifier in the
prefix, and these are clearly listed in the standard documentation [Blackford
et al. 2001].

Level 2 and Level 3 routines that utilize matrix handles assume an index
base of 0, consistent with C conventions for array indexing. This value can be
overridden by specifying blas_one_base at the time of creation of the matrix
handle.

C sparse matrix handles are integers, but are typedef to blas_sparse_matrix
for clarity.
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The following program illustrates the use of C code on the 4× 4 matrix from
Section 5.4.

/* C example: sparse matrix/vector multiplication */

#include <stdio.h>
#include "blas_sparse.h"

int main()
{

const int n = 4;
const int nz = 6;
double val[] = { 1.1, 2.2, 2.4, 3.3, 4.1, 4.4 };
int indx[] = { 0, 1, 1, 2, 3, 3};
int jndx[] = { 0, 1, 4, 2, 0, 3};
double x[] = { 1.0, 1.0, 1.0, 1.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0 };

blas_sparse_matrix A;
double alpha = 1.0;
int i;

/*------------------------------------*/
/* Step 1: Create Sparse BLAS Handle */
/*------------------------------------*/

A = BLAS_duscr_begin( n, n );

/*------------------------------------*/
/* Step 2: insert entries one-by-one */
/*------------------------------------*/

for (i=0; i< nz; i++)
{
BLAS_duscr_insert_entry(A, val[i], indx[i], jndx[i]);
}

/*-------------------------------------------------*/
/* Step 3: Complete construction of sparse matrix */
/*-------------------------------------------------*/

BLAS_duscr_end(A);

/*------------------------------------------------*/
/* Step 4: Compute Matrix vector product y = A*x */
/*------------------------------------------------*/
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BLAS_dusmv( blas_no_trans, alpha, A, x, 1, y, 1 );

/*---------------------------------*/
/* Step 5: Release Matrix Handle */
/*---------------------------------*/

BLAS_usds(A);

/*---------------------------*/
/* Step 6: Output Solution */
/*---------------------------*/

for (i=0; i<n; i++) printf("%12.4g ",y[i]);
printf("\n");
return 0;

}

9. CONCLUSIONS

The Sparse BLAS specification allows for portable, high-performance sparse
matrix—vector kernels that can be application or hardware specific. By not
specifying the internal format of the sparse matrices, library developers and
application programmers are able to avoid the complicated issues of sparse
matrix data structures. In addition, this enables the implementor of a Sparse
BLAS library to choose whatever data structure is appropriate for efficient
implementation for the target application and machine.

This is managed through the use of a handle to the matrix rather than
specifying the specific components of the underlying data structure. We have
described this handle interface in some detail and given examples of how it can
be used in practice.

Like the previous BLAS specifications, we hope that this initiative promotes
the exchange of portable numerical codes, while permitting programmers, com-
mercial library developers, and computer vendors to design optimized and effi-
cient code.

APPENDIX

In this appendix, we present codes in Fortran 77, C, and Fortran 95 that imple-
ment the example on the use of the Power method described in Section 5.4. All
codes have been compiled and executed. The approximate dominant eigenvalue
is 4.4.

------------------- File: power_method_driver.f --------------------

C Fortran 77 example: Build sparse matrix and call power method

PROGRAM MAIN
IMPLICIT NONE
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C Header file of prototypes and named constants
INCLUDE "blas_namedconstants.h"
INTEGER NMAX, NNZ
PARAMETER (NMAX = 4, NNZ = 6)
INTEGER I, N, ISTAT
INTEGER INDX(NNZ), JNDX(NNZ)
DOUBLE PRECISION VAL(NNZ), X(NMAX), Y(NMAX)
INTEGER A
INTEGER NITERS
DOUBLE PRECISION Q(NMAX), WORK(NMAX), LAMBDA

C
C -----------------------------------------------
C Define Matrix, LHS and RHS in Coordinate format
C -----------------------------------------------
C

DATA VAL / 1.1, 2.2, 2.4, 3.3, 4.1, 4.4/
DATA INDX / 1, 2, 2, 3, 4, 4/
DATA JNDX / 1, 2, 4, 3, 1, 4/

C
C

N = NMAX
C
C ----------------------------------
C Step 1: Create Sparse BLAS Handle
C ----------------------------------
C

CALL BLAS_DUSCR_BEGIN( N, N, A, ISTAT)

C
C -----------------------------------
C Step 2: Insert entries all at once
C -----------------------------------
C

CALL BLAS_DUSCR_INSERT_ENTRIES(A, NNZ, VAL, INDX, JNDX, ISTAT)
C
C -----------------------------------------------
C Step 3: Complete construction of sparse matrix
C -----------------------------------------------
C

CALL BLAS_USCR_END(A, ISTAT)
C
C -----------------------------------------------
C Step 4: Call Power Method Routine
C -----------------------------------------------
C

C Q -eigenvector approximation.
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C LAMBDA - eigenvalue approximation.

NITERS = 100

CALL POWER_METHOD(A, Q, LAMBDA, NITERS, WORK, ISTAT)
IF (ISTAT.NE.0) PRINT*,’Error in POWER_METHOD = ’,ISTAT

PRINT*,’Number of iterations = ’,NITERS
PRINT*,’Approximate dominant eigenvalue = ’, LAMBDA

C
C -----------------------------------------------
C Step 5: Release Matrix Handle
C -----------------------------------------------
C

CALL BLAS_USDS(A);

END

----------------------- File: power_method.f -----------------------

C Apply power method to given matrix.

SUBROUTINE POWER_METHOD(A, Q, LAMBDA, NITERS, Z, ISTAT)
IMPLICIT NONE
INCLUDE "blas_namedconstants.h"
INTEGER N
INTEGER A
DOUBLE PRECISION Q(*)
DOUBLE PRECISION LAMBDA
INTEGER NITERS
DOUBLE PRECISION Z(*), NORMZ
INTEGER ISTAT
INTEGER I, ITER
INTEGER BLAS_USGP
EXTERNAL BLAS_USGP

C Get row dimension of A (assume square)
N = BLAS_USGP(A, BLAS_NUM_ROWS)

C Fill Z.
C Note: We should fill Z with random numbers, but no standard
C random function is available for Fortran 77.

DO 10 I = 1, N
Z(I) = I

10 CONTINUE

DO 20 ITER = 1, NITERS
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C Compute 2-norm of Z
CALL BLAS_DNORM(BLAS_TWO_NORM, N, Z, 1, NORMZ)

C Copy Z to Q
CALL BLAS_DCOPY(N, Z, 1, Q, 1)

C Normalize Q
CALL BLAS_DRSCALE(N, NORMZ, Q, 1)

C Compute new Z
CALL BLAS_DUSMV(BLAS_NO_TRANS, 1.0, A, Q, 1, Z, 1, ISTAT)

C Test error flag
IF (ISTAT.NE.0) RETURN

C New LAMBDA
CALL BLAS_DDOT(BLAS_NO_CONJ, N, 1.0, Q, 1, 0.0, Z, 1,
LAMBDA)

20 CONTINUE

RETURN

END

------------------- File: power_method_driver.c --------------------

/* C example: Build sparse matrix and call power method */

#include <stdio.h>
#include <stdlib.h>
#include "blas_sparse.h" /* Header file of prototypes and named
constants */
int main()
{

const int N = 4;
const int nnz = 6;
double val[] = { 1.1, 2.2, 2.4, 3.3, 4.1, 4.4 };
int indx[] = { 0, 1, 1, 2, 3, 3};
int jndx[] = { 0, 1, 4, 2, 0, 3};

blas_sparse_matrix A;
int istat = 0;
int niters;
double * q, lambda;
int power_method(blas_sparse_matrix, double *, double *, int);

/*------------------------------------*/
/* Step 1: Create Sparse BLAS Handle */
/*------------------------------------*/

A = BLAS_duscr_begin( N, N );

/*------------------------------------*/
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/* Step 2: insert entries one-by-one */
/*------------------------------------*/

BLAS_duscr_insert_entries(A, nnz, val, indx, jndx);

/*-------------------------------------------------*/
/* Step 3: Complete construction of sparse matrix */
/*-------------------------------------------------*/

BLAS_duscr_end(A);

/*------------------------------------------------*/
/* Step 4: Call Power Method Routine */
/*------------------------------------------------*/

/*.
q - eigenvector approximation (allocated by power_method).
lambda - eigenvalue approximation.

*/

niters = 100;

istat = power_method( A, q, &lambda, niters);

printf("Approximate dominant eigenvalue after %d iterations =
%10.4g\n", niters, lambda);

/*----------------------------------------------*/
/* Step 5: Release Matrix Handle, Eigenvector */
/*----------------------------------------------*/

free (q);
BLAS_usds(A);

return istat;
}

----------------------- File: power_method.c -----------------------

/* Apply power method to given matrix. */
#include <stdlib.h> /* Needed for malloc */
#include "blas_sparse.h"/* Header file of prototypes and named

constants */
#include "blas_dense.h"/* Header file of prototypes and named
constants */
int power_method(blas_sparse_matrix A, double * q, double * lambda,

int niters)
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{
int istat = 0;
int i, n, iter;
double * z, normz;

/* Get row dimension of A (assume square) */
n = BLAS_usgp(A, blas_num_rows);

/* Allocate eigenvector, work vectors */
q = (double *) malloc(sizeof(double)*n);
z = (double *) malloc(sizeof(double)*n);

/* Fill z with random numbers using rand() function */
for (i=0; i < n; i++) z[i] = ((double) rand())/ ((double)

RAND_MAX);

for (iter = 0; iter < niters; iter++)
{

BLAS_dnorm(blas_two_norm, n, z, 1, &normz); /* Compute 2-norm
of z */

BLAS_dcopy(n, z, 1, q, 1); /* Copy z to q */
BLAS_drscale(n, normz, q, 1); /* Normalize q */
/* Compute new z */
istat = BLAS_dusmv( blas_no_trans, 1.0, A, q, 1, z, 1 );
if (istat!=0) return(istat); /* Test error flag */
/* new lambda */
BLAS_ddot(blas_no_conj, n, 1.0, q, 1, 0.0, z, 1, lambda);

}

free(z); /* release work vector */

return istat;
}

------------------ File: power_method_driver.f95 -------------------

! Fortran 95 example: Build sparse matrix and call power method

PROGRAM MAIN
! Header file of prototypes and named constants

USE blas_sparse
INTEGER, PARAMETER :: nmax = 4, nnz = 6
INTEGER i, n, istat
INTEGER, DIMENSION(:), ALLOCATABLE :: indx,jndx
DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: val,q,work
INTEGER a,niters
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DOUBLE PRECISION lambda

ALLOCATE (val(nnz),indx(nnz),jndx(nnz))
ALLOCATE (q(nmax),work(nmax))

!
! -----------------------------------
! Define matrix, in coordinate format
! -----------------------------------
!

val = (/ 1.1, 2.2, 2.4, 3.3, 4.1, 4.4/)
indx = (/ 1, 2, 2, 3, 4, 4/)
jndx = (/ 1, 2, 4, 3, 1, 4/)

!
!

n = nmax
!
! ----------------------------------
! Step 1: Create Sparse BLAS handle
! ----------------------------------
!

CALL duscr_begin( n, n, a, istat)

!
! -----------------------------------
! Step 2: Insert entries all at once
! -----------------------------------
!

CALL uscr_insert_entries(a, val, indx, jndx, istat)
!
! -----------------------------------------------
! Step 3: Complete construction of sparse matrix
! -----------------------------------------------
!

CALL uscr_end(a, istat)

!
! -----------------------------------------------
! Step 4: Call Power Method Routine
! -----------------------------------------------
!

! q - eigenvector approximation.
! lambda - eigenvalue approximation.

niters = 100

CALL POWER_METHOD(a, q, lambda, n, niters, work, istat)
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IF (istat.NE.0) THEN
WRITE(*,*) ’Error in POWER_METHOD = ’,istat

ELSE
WRITE(*,*) ’Number of iterations = ’,niters
WRITE(*,*) ’Approximate dominant eigenvalue = ’, lambda

ENDIF

!
! -----------------------------------------------
! Step 5: Release Matrix Handle
! -----------------------------------------------
!

CALL usds(a,istat)

END PROGRAM MAIN

------------------ File: power_method.f95 --------------------------

! Apply power method to given matrix.

SUBROUTINE POWER_METHOD(a, q, lambda, n, niters, z, istat)
USE blas_sparse
INTEGER, INTENT(IN) :: a,n,niters
DOUBLE PRECISION, DIMENSION(:), INTENT(OUT) :: q(n),z(n)
DOUBLE PRECISION, INTENT(OUT) :: lambda
INTEGER, INTENT(OUT) :: istat
INTEGER i, iter
DOUBLE PRECISION normz, dnrm2
REAL y
EXTERNAL dnrm2
INTRINSIC RANDOM_NUMBER,DOT_PRODUCT

! Fill Z with random numbers
DO I = 1, n

CALL RANDOM_NUMBER(HARVEST=y)
z(I) = DBLE(y)

END DO

DO iter = 1, niters
! Compute 2-norm of z

normz = DNRM2(n, z, 1)
! Normalize z

CALL DSCAL(n, 1.0D0/normz, z, 1)
! Copy Z to Q

q = z
! Set z to 0
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z = 0.0D0
! Compute new z

CALL usmv(a, q, z, istat)
! Test error flag

IF (istat.NE.0) RETURN
! New LAMBDA

LAMBDA = DOT_PRODUCT(q,z)
END DO

RETURN

END
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